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Main contribution

e Unifying CFM framework for FM models with arbitrary transport
maps
e This cover CFM, I-CFM, OT-CFM, SB-CFM, UOT-CFM

e Propose a variant of CFM called OT-CFM that approximates
dynamic OT via CNFs
« OT-CFM not only improves the efficiency of training and
inference, but also leads to more accurate OT flows than
existing neural OT models
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Background: Neural ODE and Optimal transport

» Pair of data distributions (data set) over R¢ with densities g(x,)
and g(x,) also denote g, and g,
* (- source distribution
* @,: target distribution
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ODE and Probability flows

« Time dependent vector field u: [0,1]xR% — R? defines an ODE:
dx = u;(x)dt
» wu, called velocity field

« Denote by y,(x) the solution of the ODE with initial condition
Yo(x) = x (called flow)
d
@ = w (@), Yol = x
* le, y:(x) is the point x transported along the vector field u;
from time Q0 up to time ¢t
« Equivalence between flow 1, and velocity field u,
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ODE and Probability flows

» Probability density p, over R

* Flow 1, induces a pushforward
~1
t

0
pe(x) = [Yilipo(x) = Po(lpt_l(x)) det[ lgx (x)]

 which is the density of points x,~p, transported along u, from
time Q totime t

« Time-varying density p; (probability path) viewed as a function
p:[0,1]xR% — R is characterized by continuity equation
dp¢

ot
 with initial condition p,

= =V (pruy)
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Goal

ch;)u( ?i:)e @ Tqa1 r(ge)t

« Construct u, (or ;) such that the resulting probability path p,
governed by the continuity equation:
* Do = qq at time t = 0 (source distribution)
* p; = qq at time t = 1 (target distribution)
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Approximating ODE with neural networks

« Suppose that p;(x) and the vector field u,(x) which generates
p:(x) are known and p;(x) can be tractably sampled

« Let vy:[0,1]xR% —» R? be a time-dependent vector filed
parametrized by 0
* Py Can be regressed to u via the FM loss:

Lpy(0) = Et~U[O,1],x~pt(x)[”v9 (t,x) — ut(x)”Z]

e This objective becomes intractable for general source and target
distribution
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The case of Gaussian marginals

e |sotropic d-dimensional Gaussian marginal path

pe(x) = N(x|pe, of 1)
» The flow 1, that generates the above Gaussian marginal path is
not unique. One simplest flow is

Ye(xo) = ue + % (xo — Mo) (%)
0

« The unique vector field whose integration map satisfying (x) has
the form

O_I
ue(x) = —(x — po) + g
t

« where g; and u; denote the time derivative
e The vector field u, with initial conditions N(0, c¢I) generates

pe(x) = N(x|pue, of 1)
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Recap: Relation for FM

Flow Velocity field Probability path Boundary conds. Loss

push-forward Xg

differentiation Continuity (3.25) 1
() ’ ug () ’ () Po=1p Flow Matching (FM) (4.22)
D ) solve ODE AE Lon—unique solution T o b1 =4q D (Ut (Xt), uf (Xt)>
8 & N
3 & A E
¢ E. 80
: £ |
. differentiation\ g Continuity (325\) 1 =
Ve (z|21) ug(z|z1) pe(z]z1) Do =D Conditional FM (CFM) (4.23)
: ) solve ODE n(;n—unique solution T P1 = 5x1 D (ut(Xt|X1), ’U,? (Xt))
push—for.ward Xo
try + (1 —t)x (x1 —x) /(1 —1) N (z|tzy, (1 —t)21) po =N(0,1) OT, Gauss CFM (2.9)
p1 = 0, luf (X¢) — (X1 = Xo)|”

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University



Static optimal transport

« 2-Wasserstein distance (static OT) between densities g, and g,
over R4 w.r.t. Euclidean distance cost c(x,y) = ||x — y||

mrEell
« where 1 denotes the set of all joint probability measures on

R4xR% whose marginals are g, and g4

W,(q0,q1)* = inf f c(x,y)* dn(x,y)
R4 xR4
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Dynamic optimal transport

 Dynamic form of 2-Wasserstein distance is defined by an
optimization problem over vector fields u,

wiaoa? = ot [ [ peollucordcds
R

e with p; = 0 and subject to the boundary conditions py = q,

p; = qq and

dp
6_tt = =V - (peu)

e Authors showed that when the true OT plan is available, OT-CFM
method approximates dynamic OT
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CFM: Vector fields generating conditional probability
paths

Let z be a conditioning (latent) variable and
pe(x) = [ peal2a @)z

where g(z) is some distribution over the conditioning variable
If p,(x|z) is generated by u,(x|z) from p,(x|z), then
u:(x|z)p:(x|2)

Pt(x)
generates the probability path p,(x) under some mild conditions

u(x) = E; q(2) [
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CFM: A regression objective for mixtures

 Given: conditional probability path p;(x|z) and conditional
vector fields u,(x|z) are known (our design) and simple

« Goal: recover the unconditional vector field u,(x) generating the
marginal path p,(x)

« Exact computation of u,(x) is intractable because p;(x) is
difficult to evaluate
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CFM loss

« Let vy:[0,1]xR?* —» R? be a time-dependent vector filed
parametrized by 0
e Conditional flow matching loss

Lerm(0) = Eey[o1].z~q(2)x~p.x12) I1Ve (t, x) — u(x]2)]|*]
« CFM loss aims to regress to the marginal vector field u,(x) using
« samples from the conditional path p,(x|z) and

« conditional vector fields u,(x|z)

« No direct access to u,(x); estimate it indirectly via regression
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CFM

 Theorem If p,(x) > 0 Vx € R% and t € [0,1], then
VoLpm(0) = Vo Lcry(0)
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CFM Algorithm

« Goal: recover the unconditional vector field u,.(x) generating the
marginal path p;(x)
Lepy(0) = Et~U[0,1],z~q(z),x~pt(XIZ)[”ve (t,x) — ut(x|Z)||2]
 Requirements:
« efficiently sample from g(z) and p,(x|2)
o efficiently compute u,(x|z)
» Then we can use stochastic CFM objective to regress vy (t, x) =~

u.(x)

Algorithm 1 Conditional Flow Matching

Input: Efficiently samplable ¢(z), p:(z|z), and computable u;(x|z) and initial network wvy.
while Training do

szq(z); t~U0,1); x~ p(x]2)

Lerm(0) < llvg(t, z) — ug(z]2)]?
0 Update(@, VgﬁCFM(O))

return vy
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FM from the Conditional Gaussian path

« Several forms of CFM depending on the choices of g(z) and
p:(: |z) and u,(- |z) with

pe(x|2) = N(x|u:(2), 0. (2)°I)
« Which is generated by u,(x|z)
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CFM: Algorithm overview

1. Define source and target distributions (g, and g;)
Choose the latent distribution g(z)
3. Define conditional path p,(- |z) with

p:(x|z) = N(x|p(2), 0,(2)I)
4. Determine conditional velocity field u,(x|z) which generates

pe(x|z)

N
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Variance exploding (Song & Ermon 2019)

q(z) = q(xq) target distribution
pe(x]x1) = N(x|xy, 0£1)

Ot
u(xlx;) = ——(x —x;)
Ot
Noise space Data space
xXo~N(0,a,1) X1~q1(0T Daqtq)
po = N(0,0p1) Dt p1 ~ q1(0T Pgata)

» of is decreasing function of t with sufficiently large g,
(exploding) and small g
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Variance preserving (Ho et al. 2020)

q(z) = q(xq) target distribution
pe(x[x1) = N(x|arxq, (1 — ap)I)

Noise space Data space
xo~N(0,1I) X1~q1(0T Daqtq)
po = N(0,1) Dt p1 ~ q1(0T Pgata)

* , isincreasing function of t with @y = 0and a; =1
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Flow matching (Lipman et al. 2023)
q(z) = q(x1),  q(x0) = N(x0[0,1)
p.(x|x1) = N(x|txy, (to — t + 1)%])

u(x|xy) = (x; —(1—o0)x)

1—(1—-o0)t

 where smoothing constant ¢ > 0

* p:(x|x,) is a conditional probability path from the standard
normal distribution py(x|z) = N(x|0,I) to a Gaussian
distribution centered at x; with small variance ¢

Flow Matching (Lipman et al )
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Independent-CFM

« Let z be a pair of random variables, a source point xy~q, and a
target point xy~q4

« Set q(z) = q(xy)q(x,) to be the independent coupling and

p.(x|2) = N(x|tx; + (1 — t)xy,0°I)
uy(x|z) = (x; — xo)

 where smoothing constant ¢ > 0

« Note that q(z) and p;(x|z) is efficiently sampleable and u; is
efficiently computable, thus gradient descent on L g, is also
efficient

* As g — 0, the marginal vector field u, approaches one that
transports the distribution g(x,) to g(x;)
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Remark of I-CFM

» No requirement for q(x,) to be Gaussian

« The conditional probability path p;(x|z) is an optimal transport
path from p,(x|z) to p;(x|z)

« However, the marginal path p, is "not” in general an OT path

from py(x) to p1(x)

Algorithm 2 Simplified Conditional Flow Matching (I-CFM)

Conditional Flow Matching Input: Empirical or samplable distributions qg, g1, bandwidth o, batchsize b, initial network vy.
AT while Training do
N AA /* Sample batches of size b i.i.d. from the datasets
nA xo ~ qo(xo); 1~ qi(z1)
N AA t ~U(0,1)
N AN pe — tey + (1 —t)ag
——Aﬂ ‘A— iL’NN(Nt,O'QI)
Lerm(9)  [vo(t, z) — (21 — o)
0 < Update(8, VoLcorm(0))

return vy
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OT-CFM

« Let z be a pair of random variables, a source point xy~q, and a
target point xy~q4
e General formulation: previous formulation extends to joint
distributions
q(z) = q(x9,%1)
« Allows x, and x; to be dependent and g(x,, x;) has marginals
q(xo) and q(x1)
« Set gq(z) = q(xy, x,)to be the 2-Wasserstein optimal transport
map m. l.e,
q(z) = m(xg, x1)
e This method is called OT-CFM
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OT-CFM: Dynamic OT

¢ Let gq(z) = m(xg, x1)
. If
pe(x|z) = N(x|tx; + (1 — t)xg,0°1)

u:(x|z) = (x1 — xp),
e then OT-CFM is equivalent to dynamic OT in the following sense
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OT-CFM: Dynamic OT

» Proposition Under regularity properties of g4, g; and OT plan 7,
as g% — 0 the marginal path p, and vector field u, minimize the
dynamic form of the 2-Wasserstein distance

W(qo, q1)* = mf fRd f pe () ||u (x)||*dt dx

 l.e., u; solves the dynamic OT between g, and g,
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Minibatch OT approximation

e The transport plan 7t is difficult to compute and store due to
OT’s cubic time and quadratic memory complexity in the nhumber
of samples

e Therefore, we rely on a minibatch OT approximation

B B
e For each batch of data ({xgl)} ,{xgl)} ) seen during training,
i=1 i=1
we sample pairs of points from the joint distribution my ¢.p

Algorithm 3 Minibatch OT Conditional Flow Matching (OT-CFM)

Input: Empirical or samplable distributions qq, ¢1, bandwidth o, batch size b, initial network wvy.
while Training do

ditional FI hi /* Sample batches of size b i.i.d. from the datasets

xo ~ qo(To); x1 ~ q1(21)

A A A T <— OT(wl,mo)

AA A (o, @1) ~ 7

AN A t~U(0,1)

NN A wi <tz + (1 — )z
g U N W x ~ N (g, 0?T)

Lerm(0)  |lva(t, ) — (@1 — x0)|?
. 0« Update(8, VoLcrm(6))
return vy
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Schrodinger bridge CFM (2021 ICML)

e Conditional flow matching method that learns vector fields to
interpolate between two distributions via an entropic optimal
transport path

* Let prer:[0,1]XR?* — R be the time dependent probability path
as the standard Wiener process scaled by ¢ with initial-time
marginal pref(xo) = q(xo)

e« The SB problem (Schrodinger 1932) seeks the process mr that is
the closest to p,. s.t. its initial and terminal marginal
distributions are q(x,) and g(x,) resp. l.e,,

*

T = argmin KL(T[ | Pref)
(x0)=q(xg)
m(x1)=q(x1)
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Schrodinger bridge CFM (2021 ICML)

e Define the joint distribution
q(z) = mys2(xg, Xq1)
« where 1,2 is the solution of the entropy regularized OT with
cost c(x,y) = ||x — y|| and entropy regularization 1 = 202

Woa(@o,a)? = inf [ c(x,y)?dmy(x,y) - AH(m)
1T EI1 RAXRA
« where 1 denotes the set of all joint probability measures on
RYxR% whose marginals are g, and g4
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Schrodinger bridge CFM (2021 ICML)

e Set the conditional path distribution to be a Brownian bridge

with diffusion scale o between x, and x; with
p.(x|z) = N(x|tx; + (1 — t)x, t(1 — t)o?])
1—2t

2t(1 =) (x — (tx, + (1 — t)xo)) + (x1 — x0)

« where conditional vector field u,(x|z) generates the probability
path p(x|z)

e The solution of the SB is known to be the map which is the
solution of the entropically-regularized OT problem

« We recover OT-CFM when A = 2¢% = 0 and I-CFM when 1 = oo

u(x|z) =
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Schrodinger bridge CFM (2021 ICML)

Algorithm 4 Minibatch Schrédinger Bridge Conditional Flow Matching (SB-CFM)

Input: Empirical or samplable distributions qg, ¢1, bandwidth o, batch size b, initial network wvy.
while Training do

/* Sample batches of size b i.i.d. from the datasets
xo ~ qo(xo); 1~ q1(x1)

Tye2 < Sinkhorn(zx1, xg, 202)

(0, ®1) ~ T2

t~U(0,1)

pe < tey + (1 —t)xg

x ~ N(ug, 0?t(1 —t)I)

wi(x|z) %(w — (tz1 + (1 —t)xo)) + (1 — o)
Lorm(0) < [lva(t, ) — ui(z|2)

0 + Update(@, VGECFM (9))

return vy
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Experiments

Table 2: Comparison of neural optimal transport methods over four distribution pairs (u £ o over five seeds)
in terms of fit (2-Wasserstein), optimal transport performance (normalized path energy), and runtime. ‘—’
indicates a method that requires a Gaussian source. Best in bold. CFM and RF models are trained on a

single CPU core, other baselines are trained with a GPU and two CPUs.

Dataset — N—8gaussians moons—8gaussians N—smoons N—sscurve Avg. train time
Algorithm | Metric — W2 NPE W3 NPE W3 NPE W3 NPE (x10% s)
OT-CFM 1.262+0.348  0.018+0.014 1.923+0.391 0.053+0.035 0.239+0.048 0.087+0.061 0.264+0.0903 0.027+0.026 1.129+0.335
I-CFM 1.284+0.384  0.222+0.032  1.977+0.266  2.738+0.181  0.338+0.100  0.841+0.148  0.333+0.060  0.867=+0.117 0.630=+0.365
2-RF (Liu, 2022) 1.436+0.344  0.069+0.027  2.211+0.423  0.149+0.101  0.278+0.026  0.076+0.067 0.395+0.111  0.112+0.085 0.862+0.166
3-RF (Liu, 2022) 1.337+0.367  0.055+0.043  2.700+0.587  0.123+0.112  0.305+0.026  0.084+0.051  0.395+0.082  0.129+0.075 0.954+0.116
FM (Lipman et al., 2023) 1.062+0.196  0.174+0.030 — — 0.246+0.077  0.778+0.144  0.377+0.099  0.772+0.081 0.708+0.370
Reg. CNF (Finlay et al., 2020) 1.14440.075  0.274+0.060 — — 0.376+0.040  0.620+0.088  0.581+0.195  0.58640.503 8.021+3.288
CNF (Chen et al., 2018) 1.055+0.059 0.151+0.064 — — 0.387+0.065  2.937+1.973  0.645+0.343  10.548+8.100 18.810+12.677
ICNN (Makkuva et al., 2020) 1.771+0.3908  0.747+0.020  2.193+0.136  0.832+0.004  0.532+0.046  0.267+0.010  0.753+0.068  0.344+0.045 2.912+0.626

« Normalized path energy

T N
! 1 1 -
| [ peolue@deax =2y =" lvg (6 x2) 12
RE J0 : :

=1 Jj=1
Where t; = 0, t; = 1, ng)~q0 and xgzl _ xg) +vg tuxE{)
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Experiments
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Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3)
Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and

OT-CFM (far right).
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