Deep Generative Models

17. OT-CFM

• 국가수리과학연구소 산업수학혁신센터 김민중

Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport (2023)

- Tong et al.
- Transactions on Machine Learning Research (03/2024)

Main contribution

- Unifying CFM framework for FM models with arbitrary transport maps
 - This cover CFM, I-CFM, OT-CFM, SB-CFM, UOT-CFM
- Propose a variant of CFM called OT-CFM that approximates dynamic OT via CNFs
 - OT-CFM not only improves the efficiency of training and inference, but also leads to more accurate OT flows than existing neural OT models

Background: Neural ODE and Optimal transport

- Pair of data distributions (data set) over \mathbb{R}^d with densities $q(x_0)$ and $q(x_1)$ also denote q_0 and q_1
 - q_0 : source distribution
 - q₁: target distribution

ODE and Probability flows

- Time dependent vector field $u: [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ defines an ODE: $dx = u_t(x)dt$
- **u**_t called velocity field
- Denote by $\psi_t(x)$ the solution of the ODE with initial condition $\psi_0(x) = x$ (called flow)

$$\frac{d\psi_t}{dt}(\mathbf{x}) = \mathbf{u}_t(\psi_t(\mathbf{x})), \qquad \psi_0(\mathbf{x}) = \mathbf{x}$$

- I.e., $\psi_t(\mathbf{x})$ is the point \mathbf{x} transported along the vector field \mathbf{u}_t from time 0 up to time t
- Equivalence between flow ψ_t and velocity field u_t

ODE and Probability flows

- Probability density p_0 over \mathbb{R}^d
- Flow ψ_t induces a pushforward

$$p_t(\mathbf{x}) = [\psi_t]_* p_0(\mathbf{x}) \coloneqq p_0(\psi_t^{-1}(\mathbf{x})) \det \left| \frac{\partial \psi_t^{-1}}{\partial \mathbf{x}}(\mathbf{x}) \right|$$

- which is the density of points $x_0 \sim p_0$ transported along u_t from time 0 to time t
- Time-varying density p_t (probability path) viewed as a function $p: [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ is characterized by continuity equation

$$\frac{\partial p_t}{\partial t} = -\nabla \cdot (p_t \boldsymbol{u}_t)$$

• with initial condition p_0

Goal

- Construct u_t (or ψ_t) such that the resulting probability path p_t governed by the continuity equation:
 - $p_0 \approx q_0$ at time t = 0 (source distribution)
 - $p_1 \approx q_1$ at time t = 1 (target distribution)

Approximating ODE with neural networks

- Suppose that $p_t(x)$ and the vector field $u_t(x)$ which generates $p_t(x)$ are known and $p_t(x)$ can be tractably sampled
- Let v_{θ} : $[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ be a time-dependent vector filed parametrized by θ
- $v_{ heta}$ can be regressed to u via the FM loss:

 $\mathcal{L}_{FM}(\theta) \coloneqq E_{t \sim U[0,1], \mathbf{x} \sim p_t(\mathbf{x})}[\|\boldsymbol{v}_{\theta}(t, \mathbf{x}) - \boldsymbol{u}_t(\mathbf{x})\|^2]$

• This objective becomes intractable for general source and target distribution

The case of Gaussian marginals

• Isotropic *d*-dimensional Gaussian marginal path

$$p_t(\boldsymbol{x}) = N(\boldsymbol{x}|\boldsymbol{\mu}_t, \sigma_t^2 \boldsymbol{I})$$

• The flow ψ_t that generates the above Gaussian marginal path is not unique. One simplest flow is

$$\psi_t(x_0) = \boldsymbol{\mu}_t + \frac{\sigma_t}{\sigma_0} (\boldsymbol{x}_0 - \boldsymbol{\mu}_0) \qquad (*)$$

 The unique vector field whose integration map satisfying (*) has the form

$$\boldsymbol{u}_t(\boldsymbol{x}) = \frac{\sigma_t'}{\sigma_t}(\boldsymbol{x} - \boldsymbol{\mu}_t) + \boldsymbol{\mu}_t'$$

- where σ'_t and μ'_t denote the time derivative
- The vector field \boldsymbol{u}_t with initial conditions $N(\boldsymbol{0}, \sigma_0^2 \boldsymbol{I})$ generates $p_t(\boldsymbol{x}) = N(\boldsymbol{x}|\boldsymbol{\mu}_t, \sigma_t^2 \boldsymbol{I})$

Recap: Relation for FM

Static optimal transport

• 2-Wasserstein distance (static OT) between densities q_0 and q_1 over \mathbb{R}^d w.r.t. Euclidean distance cost c(x, y) = ||x - y||

$$W_2(q_0, q_1)^2 \coloneqq \inf_{\pi \in \Pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(\mathbf{x}, \mathbf{y})^2 \, d\pi(\mathbf{x}, \mathbf{y})$$

• where Π denotes the set of all joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ whose marginals are q_0 and q_1

Dynamic optimal transport

• Dynamic form of 2-Wasserstein distance is defined by an optimization problem over vector fields u_t

$$W_2(q_0, q_1)^2 = \inf_{p_t, u_t} \int_{\mathbb{R}^d} \int_0^1 p_t(x) \|u_t(x)\|^2 dt \, dx$$

• with $p_t \ge 0$ and subject to the boundary conditions $p_0 = q_0$, $p_1 = q_1$ and

$$\frac{\partial p_t}{\partial t} = -\nabla \cdot (p_t \boldsymbol{u}_t)$$

 Authors showed that when the true OT plan is available, OT-CFM method approximates dynamic OT

CFM: Vector fields generating conditional probability paths

• Let *z* be a conditioning (latent) variable and

$$p_t(\mathbf{x}) = \int p_t(\mathbf{x}|\mathbf{z})q(\mathbf{z})d\mathbf{z}$$

- where $q(\mathbf{z})$ is some distribution over the conditioning variable
- If $p_t(\mathbf{x}|\mathbf{z})$ is generated by $\mathbf{u}_t(\mathbf{x}|\mathbf{z})$ from $p_0(\mathbf{x}|\mathbf{z})$, then $\mathbf{u}_t(\mathbf{x}) \coloneqq E_{\mathbf{z} \sim q(\mathbf{z})} \left[\frac{\mathbf{u}_t(\mathbf{x}|\mathbf{z})p_t(\mathbf{x}|\mathbf{z})}{p_{t(\mathbf{x})}} \right]$
- generates the probability path $p_t(\mathbf{x})$ under some mild conditions

CFM: A regression objective for mixtures

- **Given**: conditional probability path $p_t(x|z)$ and conditional vector fields $u_t(x|z)$ are known (our design) and simple
- **Goal**: recover the unconditional vector field $u_t(x)$ generating the marginal path $p_t(x)$
- Exact computation of $u_t(x)$ is intractable because $p_t(x)$ is difficult to evaluate

CFM loss

- Let v_{θ} : $[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ be a time-dependent vector filed parametrized by θ
- Conditional flow matching loss

 $\mathcal{L}_{CFM}(\theta) \coloneqq E_{t \sim U[0,1], \boldsymbol{z} \sim q(\boldsymbol{z}), \boldsymbol{x} \sim p_t(\boldsymbol{x}|\boldsymbol{z})} [\|\boldsymbol{v}_{\theta}(t, \boldsymbol{x}) - \boldsymbol{u}_t(\boldsymbol{x}|\boldsymbol{z})\|^2]$

- CFM loss aims to regress to the marginal vector field $u_t(x)$ using
 - samples from the conditional path $p_t(\mathbf{x}|\mathbf{z})$ and
 - conditional vector fields $u_t(x|z)$
- No direct access to $u_t(x)$; estimate it indirectly via regression

CFM

• <u>Theorem</u> If $p_t(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \mathbb{R}^d$ and $t \in [0,1]$, then $\nabla_{\theta} \mathcal{L}_{FM}(\theta) = \nabla_{\theta} \mathcal{L}_{CFM}(\theta)$

CFM Algorithm

• **Goal**: recover the unconditional vector field $u_t(x)$ generating the marginal path $p_t(x)$

 $\mathcal{L}_{CFM}(\theta) \coloneqq E_{t \sim U[0,1], \mathbf{z} \sim q(\mathbf{z}), \mathbf{x} \sim p_t(\mathbf{x}|\mathbf{z})} [\| \boldsymbol{v}_{\theta}(t, \mathbf{x}) - \boldsymbol{u}_t(\mathbf{x}|\mathbf{z}) \|^2]$

- Requirements:
 - efficiently sample from q(z) and $p_t(x|z)$
 - efficiently compute $u_t(x|z)$
- Then we can use stochastic CFM objective to regress $v_{\theta}(t, x) \approx u_t(x)$

Algorithm 1 Conditional Flow Matching

Input: Efficiently samplable q(z), $p_t(x|z)$, and computable $u_t(x|z)$ and initial network v_{θ} . **while** Training **do** $\begin{aligned} z \sim q(z); \quad t \sim \mathcal{U}(0,1); \quad x \sim p_t(x|z) \\ \mathcal{L}_{\text{CFM}}(\theta) \leftarrow \|v_{\theta}(t,x) - u_t(x|z)\|^2 \\ \theta \leftarrow \text{Update}(\theta, \nabla_{\theta} \mathcal{L}_{\text{CFM}}(\theta)) \end{aligned}$ return v_{θ}

FM from the Conditional Gaussian path

• Several forms of CFM depending on the choices of q(z) and $p_t(\cdot | z)$ and $u_t(\cdot | z)$ with

 $p_t(\boldsymbol{x}|\boldsymbol{z}) = N(\boldsymbol{x}|\boldsymbol{\mu}_t(\boldsymbol{z}), \sigma_t(\boldsymbol{z})^2 \boldsymbol{I})$

• Which is generated by $u_t(x|z)$

CFM: Algorithm overview

- 1. Define source and target distributions (q_0 and q_1)
- 2. Choose the latent distribution $q(\mathbf{z})$
- 3. Define conditional path $p_t(\cdot | \mathbf{z})$ with

 $p_t(\boldsymbol{x}|\boldsymbol{z}) = N(\boldsymbol{x}|\boldsymbol{\mu}_t(\boldsymbol{z}), \sigma_t(\boldsymbol{z})^2 \boldsymbol{I})$

4. Determine conditional velocity field $u_t(x|z)$ which generates $p_t(x|z)$

Variance exploding (Song & Ermon 2019)

$$q(\mathbf{z}) = q(\mathbf{x}_1) \text{ target distribution}$$
$$p_t(\mathbf{x}|\mathbf{x}_1) = N(\mathbf{x}|\mathbf{x}_1, \sigma_t^2 \mathbf{I})$$
$$\mathbf{u}_t(\mathbf{x}|\mathbf{x}_1) = -\frac{\sigma_t'}{\sigma_t}(\mathbf{x} - \mathbf{x}_1)$$

• σ_t^2 is decreasing function of t with sufficiently large σ_0 (exploding) and small σ_1

Variance preserving (Ho et al. 2020)

$$q(\mathbf{z}) = q(\mathbf{x}_1)$$
 target distribution
 $p_t(\mathbf{x}|\mathbf{x}_1) = N(\mathbf{x}|\alpha_t\mathbf{x}_1, (1-\alpha_t)\mathbf{I})$

Noise space
$$x_0 \sim N(\mathbf{0}, I)$$
Data space
 $x_1 \sim q_1 (\text{or } p_{data})$ $p_0 \approx N(\mathbf{0}, I)$ p_t $p_1 \approx q_1 (\text{or } p_{data})$

• α_t is increasing function of t with $\alpha_0 = 0$ and $\alpha_1 = 1$

Flow matching (Lipman et al. 2023)

$$q(\mathbf{z}) = q(\mathbf{x}_{1}), \qquad q(\mathbf{x}_{0}) = N(\mathbf{x}_{0}|\mathbf{0}, \mathbf{I})$$

$$p_{t}(\mathbf{x}|\mathbf{x}_{1}) = N(\mathbf{x}|t\mathbf{x}_{1}, (t\sigma - t + 1)^{2}\mathbf{I})$$

$$u_{t}(\mathbf{x}|\mathbf{x}_{1}) = \frac{1}{1 - (1 - \sigma)t}(\mathbf{x}_{1} - (1 - \sigma)\mathbf{x})$$

- where smoothing constant $\sigma > 0$
- $p_t(\mathbf{x}|\mathbf{x}_1)$ is a conditional probability path from the standard normal distribution $p_0(\mathbf{x}|\mathbf{z}) = N(\mathbf{x}|\mathbf{0}, \mathbf{I})$ to a Gaussian distribution centered at \mathbf{x}_1 with small variance σ

Independent-CFM

- Let z be a pair of random variables, a source point $x_0 \sim q_0$ and a target point $x_0 \sim q_1$
- Set $q(\mathbf{z}) = q(\mathbf{x}_0)q(\mathbf{x}_1)$ to be the independent coupling and $p_t(\mathbf{x}|\mathbf{z}) = N(\mathbf{x}|t\mathbf{x}_1 + (1-t)\mathbf{x}_0, \sigma^2 \mathbf{I})$ $\mathbf{u}_t(\mathbf{x}|\mathbf{z}) = (\mathbf{x}_1 - \mathbf{x}_0)$
- where smoothing constant $\sigma > 0$
- Note that $q(\mathbf{z})$ and $p_t(\mathbf{x}|\mathbf{z})$ is efficiently sampleable and \mathbf{u}_t is efficiently computable, thus gradient descent on \mathcal{L}_{CFM} is also efficient
- As $\sigma \to 0$, the marginal vector field u_t approaches one that transports the distribution $q(x_0)$ to $q(x_1)$

Remark of I-CFM

- No requirement for $q(x_0)$ to be Gaussian
- The conditional probability path $p_t(x|z)$ is an optimal transport path from $p_0(x|z)$ to $p_1(x|z)$
- However, the marginal path p_t is "not" in general an OT path from $p_0(\mathbf{x})$ to $p_1(\mathbf{x})$

Algorithm 2 Simplified Conditional Flow Matching (I-CFM)

Input: Empirical or samplable distributions q_0, q_1 , bandwidth σ , batchsize b, initial network v_{θ} . while Training do /* Sample batches of size b i.i.d. from the datasets $\boldsymbol{x}_0 \sim q_0(\boldsymbol{x}_0); \quad \boldsymbol{x}_1 \sim q_1(\boldsymbol{x}_1)$ $t \sim \mathcal{U}(0, 1)$ $\mu_t \leftarrow t\boldsymbol{x}_1 + (1 - t)\boldsymbol{x}_0$ $\boldsymbol{x} \sim \mathcal{N}(\mu_t, \sigma^2 I)$ $\mathcal{L}_{\text{CFM}}(\theta) \leftarrow \|v_{\theta}(t, \boldsymbol{x}) - (\boldsymbol{x}_1 - \boldsymbol{x}_0)\|^2$ $\theta \leftarrow \text{Update}(\theta, \nabla_{\theta}\mathcal{L}_{\text{CFM}}(\theta))$ return v_{θ}

OT-CFM

- Let z be a pair of random variables, a source point $x_0 \sim q_0$ and a target point $x_0 \sim q_1$
- General formulation: previous formulation extends to joint distributions

$$q(\mathbf{z}) = q(\mathbf{x}_0, \mathbf{x}_1)$$

- Allows x_0 and x_1 to be **dependent** and $q(x_0, x_1)$ has marginals $q(x_0)$ and $q(x_1)$
- Set $q(\mathbf{z}) = q(\mathbf{x}_0, \mathbf{x}_1)$ to be the 2-Wasserstein optimal transport map π . I.e.,

$$q(\mathbf{z}) = \pi(\mathbf{x}_0, \mathbf{x}_1)$$

• This method is called OT-CFM

OT-CFM: Dynamic **OT**

• Let
$$q(z) = \pi(x_0, x_1)$$

• If

$$p_t(\boldsymbol{x}|\boldsymbol{z}) = N(\boldsymbol{x}|t\boldsymbol{x}_1 + (1-t)\boldsymbol{x}_0, \sigma^2 \boldsymbol{I})$$
$$\boldsymbol{u}_t(\boldsymbol{x}|\boldsymbol{z}) = (\boldsymbol{x}_1 - \boldsymbol{x}_0),$$

• then OT-CFM is equivalent to dynamic OT in the following sense

OT-CFM: Dynamic OT

• **<u>Proposition</u>** Under regularity properties of q_0 , q_1 and OT plan π , as $\sigma^2 \rightarrow 0$ the marginal path p_t and vector field u_t minimize the dynamic form of the 2-Wasserstein distance

$$W_2(q_0, q_1)^2 = \inf_{p_t, u_t} \int_{\mathbb{R}^d} \int_0^1 p_t(\mathbf{x}) \|u_t(\mathbf{x})\|^2 dt \, d\mathbf{x}$$

• I.e., \boldsymbol{u}_t solves the dynamic OT between q_0 and q_1

Minibatch OT approximation

- The transport plan π is difficult to compute and store due to OT's cubic time and quadratic memory complexity in the number of samples
- Therefore, we rely on a minibatch OT approximation
- For each batch of data $\left(\left\{x_{0}^{(i)}\right\}_{i=1}^{B}, \left\{x_{1}^{(i)}\right\}_{i=1}^{B}\right)$ seen during training, we sample pairs of points from the joint distribution π_{batch}

Algorithm 3 Minibatch OT Conditional Flow Matching (OT-CFM)

Input: Empirical or samplable distributions q_0, q_1 , bandwidth σ , batch size b, initial network v_{θ} . while Training **do**

 $\begin{array}{c} /* \ Sample \ batches \ of \ size \ b \ i.i.d. \ from \ the \ datasets \\ \boldsymbol{x}_0 \sim q_0(\boldsymbol{x}_0); \quad \boldsymbol{x}_1 \sim q_1(\boldsymbol{x}_1) \\ \pi \leftarrow \operatorname{OT}(\boldsymbol{x}_1, \boldsymbol{x}_0) \\ (\boldsymbol{x}_0, \boldsymbol{x}_1) \sim \pi \\ \boldsymbol{t} \sim \mathcal{U}(0, 1) \\ \mu_t \leftarrow \boldsymbol{t} \boldsymbol{x}_1 + (1 - \boldsymbol{t}) \boldsymbol{x}_0 \\ \boldsymbol{x} \sim \mathcal{N}(\mu_t, \sigma^2 I) \\ \mathcal{L}_{\operatorname{CFM}}(\theta) \leftarrow \| v_{\theta}(\boldsymbol{t}, \boldsymbol{x}) - (\boldsymbol{x}_1 - \boldsymbol{x}_0) \|^2 \\ \theta \leftarrow \operatorname{Update}(\theta, \nabla_{\theta} \mathcal{L}_{\operatorname{CFM}}(\theta)) \end{array}$

- Conditional flow matching method that learns vector fields to interpolate between two distributions via an entropic optimal transport path
- Let $p_{ref}: [0,1] \times \mathbb{R}^d \to \mathbb{R}$ be the time dependent probability path as the standard Wiener process scaled by σ with initial-time marginal $p_{ref}(\mathbf{x}_0) = q(\mathbf{x}_0)$
- The SB problem (Schrödinger 1932) seeks the process π that is the closest to p_{ref} s.t. its initial and terminal marginal distributions are $q(\mathbf{x}_0)$ and $q(\mathbf{x}_1)$ resp. I.e.,

$$\pi^* = \underset{\substack{\pi(x_0) = q(x_0) \\ \pi(x_1) = q(x_1)}}{\operatorname{argmin}} KL(\pi \parallel p_{ref})$$

• Define the joint distribution

$$q(z) = \pi_{2\sigma^2}(\boldsymbol{x}_0, \boldsymbol{x}_1)$$

• where $\pi_{2\sigma^2}$ is the solution of the entropy regularized OT with cost c(x, y) = ||x - y|| and entropy regularization $\lambda = 2\sigma^2$

$$W_{2,\lambda}(q_0, q_1)^2 \coloneqq \inf_{\pi_{\lambda} \in \Pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(\mathbf{x}, \mathbf{y})^2 d\pi_{\lambda}(\mathbf{x}, \mathbf{y}) - \lambda H(\pi_{\lambda})$$

• where Π denotes the set of all joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ whose marginals are q_0 and q_1

1

• Set the conditional path distribution to be a Brownian bridge with diffusion scale σ between x_0 and x_1 with

$$p_t(\mathbf{x}|\mathbf{z}) = N(\mathbf{x}|t\mathbf{x}_1 + (1-t)\mathbf{x}_0, t(1-t)\sigma^2 \mathbf{I})$$
$$u_t(\mathbf{x}|\mathbf{z}) = \frac{1-2t}{2t(1-t)} \left(\mathbf{x} - (t\mathbf{x}_1 + (1-t)\mathbf{x}_0)\right) + (\mathbf{x}_1 - \mathbf{x}_0)$$

- where conditional vector field $u_t(x|z)$ generates the probability path $p_t(x|z)$
- The solution of the SB is known to be the map which is the solution of the entropically-regularized OT problem
- We recover OT-CFM when $\lambda = 2\sigma^2 \rightarrow 0$ and I-CFM when $\lambda \rightarrow \infty$

Algorithm 4 Minibatch Schrödinger Bridge Conditional Flow Matching (SB-CFM)

Input: Empirical or samplable distributions q_0, q_1 , bandwidth σ , batch size b, initial network v_{θ} . while Training do

 $\begin{array}{|l|l|} & /^* \ Sample \ batches \ of \ size \ b \ i.i.d. \ from \ the \ datasets \\ & \boldsymbol{x}_0 \sim q_0(\boldsymbol{x}_0); \quad \boldsymbol{x}_1 \sim q_1(\boldsymbol{x}_1) \\ & \pi_{2\sigma^2} \leftarrow \operatorname{Sinkhorn}(\boldsymbol{x}_1, \boldsymbol{x}_0, 2\sigma^2) \\ & (\boldsymbol{x}_0, \boldsymbol{x}_1) \sim \pi_{2\sigma^2} \\ & \boldsymbol{t} \sim \mathcal{U}(0, 1) \\ & \mu_t \leftarrow \boldsymbol{t} \boldsymbol{x}_1 + (1 - \boldsymbol{t}) \boldsymbol{x}_0 \\ & \boldsymbol{x} \sim \mathcal{N}(\mu_t, \sigma^2 \boldsymbol{t}(1 - \boldsymbol{t}) I) \\ & \boldsymbol{u}_t(\boldsymbol{x} | \boldsymbol{z}) \leftarrow \frac{1 - 2t}{2t(1 - t)} (\boldsymbol{x} - (\boldsymbol{t} \boldsymbol{x}_1 + (1 - \boldsymbol{t}) \boldsymbol{x}_0)) + (\boldsymbol{x}_1 - \boldsymbol{x}_0) \\ & \mathcal{L}_{\operatorname{CFM}}(\theta) \leftarrow \| v_\theta(\boldsymbol{t}, \boldsymbol{x}) - \boldsymbol{u}_t(\boldsymbol{x} | \boldsymbol{z}) \|^2 \\ & \theta \leftarrow \operatorname{Update}(\theta, \nabla_\theta \mathcal{L}_{\operatorname{CFM}}(\theta)) \\ \mathbf{return} \ v_\theta \end{array}$

Experiments

Table 2: Comparison of neural optimal transport methods over four distribution pairs ($\mu \pm \sigma$ over five seeds) in terms of fit (2-Wasserstein), optimal transport performance (normalized path energy), and runtime. '—' indicates a method that requires a Gaussian source. Best in **bold**. CFM and RF models are trained on a single CPU core, other baselines are trained with a GPU and two CPUs.

$Dataset \rightarrow$	\rightarrow $\mathcal{N} \rightarrow 8$ gaussians		moons→8gaussians		$\mathcal{N} { ightarrow} { m moons}$		$\mathcal{N} \rightarrow$ scurve		Avg. train time
Algorithm \downarrow Metric \rightarrow	W_{2}^{2}	NPE	W_{2}^{2}	NPE	W_{2}^{2}	NPE	W_{2}^{2}	NPE	$(\times 10^3 \text{ s})$
OT-CFM I-CFM	$\frac{1.262 \pm 0.348}{1.284 \pm 0.384}$	$\begin{array}{c} \textbf{0.018} {\scriptstyle \pm 0.014} \\ 0.222 {\scriptstyle \pm 0.032} \end{array}$	$\frac{1.923 \pm 0.391}{1.977 \pm 0.266}$	$\begin{array}{c} \textbf{0.053} {\scriptstyle \pm 0.035} \\ 2.738 {\scriptstyle \pm 0.181} \end{array}$	$\begin{array}{c} \textbf{0.239} {\scriptstyle \pm 0.048} \\ 0.338 {\scriptstyle \pm 0.109} \end{array}$	$\begin{array}{c} 0.087 {\pm} 0.061 \\ 0.841 {\pm} 0.148 \end{array}$	$\begin{array}{c} \textbf{0.264} {\scriptstyle \pm 0.093} \\ 0.333 {\scriptstyle \pm 0.060} \end{array}$	$\begin{array}{c} \textbf{0.027} {\scriptstyle \pm 0.026} \\ 0.867 {\scriptstyle \pm 0.117} \end{array}$	$\begin{array}{c} 1.129 {\pm} 0.335 \\ \textbf{0.630} {\pm} 0.365 \end{array}$
2-RF (Liu, 2022) 3-RF (Liu, 2022) FM (Lipman et al., 2023)	$\begin{array}{c} 1.436 {\pm} 0.344 \\ 1.337 {\pm} 0.367 \\ 1.062 {\pm} 0.196 \end{array}$	$\begin{array}{c} 0.069 {\pm} 0.027 \\ 0.055 {\pm} 0.043 \\ 0.174 {\pm} 0.030 \end{array}$	2.211 ± 0.423 2.700 ± 0.587	0.149 ± 0.101 0.123 ± 0.112	$\begin{array}{c} 0.278 {\pm} 0.026 \\ 0.305 {\pm} 0.026 \\ 0.246 {\pm} 0.077 \end{array}$	$\begin{array}{c} \textbf{0.076} {\scriptstyle \pm 0.067} \\ 0.084 {\scriptstyle \pm 0.051} \\ 0.778 {\scriptstyle \pm 0.144} \end{array}$	$\begin{array}{c} 0.395 {\pm} 0.111 \\ 0.395 {\pm} 0.082 \\ 0.377 {\pm} 0.099 \end{array}$	$\begin{array}{c} 0.112{\pm}0.085\\ 0.129{\pm}0.075\\ 0.772{\pm}0.081\end{array}$	$\begin{array}{c} 0.862{\scriptstyle \pm 0.166} \\ 0.954{\scriptstyle \pm 0.116} \\ 0.708{\scriptstyle \pm 0.370} \end{array}$
Reg. CNF (Finlay et al., 2020) CNF (Chen et al., 2018) ICNN (Makkuva et al., 2020)	$\begin{array}{c} 1.144{\scriptstyle \pm 0.075} \\ \textbf{1.055}{\scriptstyle \pm 0.059} \\ 1.771{\scriptstyle \pm 0.398} \end{array}$	$\begin{array}{c} 0.274 {\pm} 0.060 \\ 0.151 {\pm} 0.064 \\ 0.747 {\pm} 0.029 \end{array}$	 2.193±0.136	 0.832±0.004	$\begin{array}{c} 0.376 {\pm} 0.040 \\ 0.387 {\pm} 0.065 \\ 0.532 {\pm} 0.046 \end{array}$	$\begin{array}{c} 0.620 {\pm} 0.088 \\ 2.937 {\pm} 1.973 \\ 0.267 {\pm} 0.010 \end{array}$	$\begin{array}{c} 0.581 {\pm} 0.195 \\ 0.645 {\pm} 0.343 \\ 0.753 {\pm} 0.068 \end{array}$	$\begin{array}{c} 0.586 {\pm} 0.503 \\ 10.548 {\pm} 8.100 \\ 0.344 {\pm} 0.045 \end{array}$	$\begin{array}{c} 8.021{\pm}3.288\\ 18.810{\pm}12.677\\ 2.912{\pm}0.626\end{array}$

Normalized path energy

$$\int_{\mathbb{R}^d} \int_0^1 p_t(\mathbf{x}) \| \mathbf{u}_t(\mathbf{x}) \|^2 dt \, d\mathbf{x} \approx \frac{1}{T} \sum_{i=1}^T \frac{1}{N} \sum_{j=1}^N \| \mathbf{v}_{\theta} \left(t_i, \mathbf{x}_{t_i}^{(j)} \right) \|^2$$

Where $t_1 = 0, t_T = 1, \mathbf{x}_0^{(j)} \sim q_0$ and $\mathbf{x}_{t_{i+1}}^{(j)} = \mathbf{x}_{t_i}^{(j)} + \mathbf{v}_{\theta} \left(t_i, \mathbf{x}_{t_i}^{(j)} \right)$

Experiments

Action-Matching (Swish) CFM Action-Matching VP-CFM SB-CFM (ours) OT-CFM (ours) Flow Matching (Lipman et al.) Conditional Flow Matching OT Conditional Flow Matching ΛΛ ٨ ٨ ٨ Λ Λ ٨ ٨ ٨ Λ ΛΛ ٨ ٨ ٨ Λ Λ Λ Λ Λ

Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3). Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and OT-CFM (far right).

8gaussians to Moons T=0.00

Thanks