
Deep Generative Models

17. OT-CFM

• 국가수리과학연구소 산업수학혁신센터 김민중

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Improving and Generalizing Flow-Based Generative

Models with Minibatch Optimal Transport (2023)

• Tong et al.
• Transactions on Machine Learning Research (03/2024)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Main contribution

• Unifying CFM framework for FM models with arbitrary transport
maps
• This cover CFM, I-CFM, OT-CFM, SB-CFM, UOT-CFM

• Propose a variant of CFM called OT-CFM that approximates
dynamic OT via CNFs
• OT-CFM not only improves the efficiency of training and
inference, but also leads to more accurate OT flows than
existing neural OT models

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Background: Neural ODE and Optimal transport

• Pair of data distributions (data set) over ℝ! with densities 𝑞 𝒙"
and 𝑞 𝒙# also denote 𝑞" and 𝑞#
• 𝑞": source distribution
• 𝑞#: target distribution

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

ODE and Probability flows

• Time dependent vector field 𝒖: 0,1 ×ℝ! → ℝ! defines an ODE:
𝑑𝒙 = 𝒖$ 𝒙 𝑑𝑡

• 𝒖$ called velocity field

• Denote by 𝜓$ 𝒙 the solution of the ODE with initial condition
𝜓" 𝒙 = 𝒙 (called flow)

𝑑𝜓$
𝑑𝑡 𝒙 = 𝒖$ 𝜓$ 𝒙 , 𝜓" 𝒙 = 𝒙

• I.e., 𝜓$ 𝒙 is the point 𝒙 transported along the vector field 𝒖$
from time 0 up to time 𝑡

• Equivalence between flow 𝜓$ and velocity field 𝒖$

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

ODE and Probability flows

• Probability density 𝑝" over ℝ!
• Flow 𝜓$ induces a pushforward

𝑝$ 𝒙 = 𝜓$ ∗𝑝" 𝒙 ≔ 𝑝" 𝜓$&# 𝒙 det
𝜕𝜓$&#

𝜕𝒙
𝒙

• which is the density of points 𝒙"~𝑝" transported along 𝒖$ from
time 0 to time 𝑡

• Time-varying density 𝑝$ (probability path) viewed as a function
𝑝: 0,1 ×ℝ! → ℝ! is characterized by continuity equation

𝜕𝑝$
𝜕𝑡

= −∇ ⋅ 𝑝$𝒖$
• with initial condition 𝑝"

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Goal

𝑞! 𝒙
Source

𝑞" 𝒙
Target

• Construct 𝒖$ (or 𝜓$) such that the resulting probability path 𝑝$
governed by the continuity equation:
• 𝑝" ≈ 𝑞" at time 𝑡 = 0 (source distribution)
• 𝑝# ≈ 𝑞# at time 𝑡 = 1 (target distribution)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Approximating ODE with neural networks

• Suppose that 𝑝$ 𝒙 and the vector field 𝒖$ 𝒙 which generates
𝑝$ 𝒙 are known and 𝑝$ 𝒙 can be tractably sampled

• Let 𝒗): 0,1 ×ℝ! → ℝ! be a time-dependent vector filed
parametrized by 𝜃

• 𝒗) can be regressed to 𝒖 via the FM loss:
ℒ*+ 𝜃 ≔ 𝐸$~- ",# ,𝒙~/! 𝒙 𝒗) 𝑡, 𝒙 − 𝒖$ 𝒙 0

• This objective becomes intractable for general source and target
distribution

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

The case of Gaussian marginals

• Isotropic 𝑑-dimensional Gaussian marginal path
𝑝$ 𝒙 = 𝑁 𝒙 𝝁$, 𝜎$0𝑰

• The flow 𝜓$ that generates the above Gaussian marginal path is
not unique. One simplest flow is

𝜓$ 𝑥" = 𝝁$ +
𝜎$
𝜎"

𝒙" − 𝝁" ∗

• The unique vector field whose integration map satisfying ∗ has
the form

𝒖$ 𝒙 =
𝜎$1

𝜎$
𝒙 − 𝝁$ + 𝝁$1

• where 𝜎$1 and 𝝁$1 denote the time derivative
• The vector field 𝒖$ with initial conditions 𝑁 𝟎, 𝜎"0𝑰 generates
𝑝$ 𝒙 = 𝑁 𝒙 𝝁$, 𝜎$0𝑰

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Recap: Relation for FM

Flow

ωt(x)

ωt(x|x1)

tx1 + (1→ t)x

Velocity field

ut(x)

ut(x|x1)

(x1 → x)/(1→ t)

Probability path

pt(x)

pt(x|x1)

N (x|tx1, (1→ t)2I)

Boundary conds.

p0 = p

p1 = q

p0 = p

p1 = εx1

p0 = N (0, I)

p1 = εx1

Loss

FlowMatching (FM) (4.22)
D

(
ut(Xt), uω

t (Xt)
)

Conditional FM (CFM) (4.23)
D

(
ut(Xt|X1), uω

t (Xt)
)

OT, Gauss CFM (2.9)
↑uω

t (Xt)→ (X1 →X0)↑2

di!erentiation

solve ODE

di!erentiation

solve ODE

Continuity (3.25)

non-unique solution

Continuity (3.25)

non-unique solution

c
o
n
d
.

e
x
p
e
c
t
a
t
io

n

?
?
?

c
o
n
d
it

io
n
in

g

m
a
r
g
in

a
li
z
a
t
io

n

push-forward X0

push-forward X0

Figure 9 Main objects of the Flow Matching framework and their relationships. A Flow is represented with a
Velocity field defining a random process generating a Probability path . The main idea of Flow Matching is to

break down the construction of a complex flow satisfying the desired Boundary conditions (top row) to conditional

flows (middle row) satisfying simpler Boundary conditions and consequently easier to solve. The arrows indicate
dependencies between di!erent objects; Blue arrows signify relationships employed by the Flow Matching framework.
The Loss column lists the losses for learning the Velocity field , where the CFM loss (middle and bottom row) is
what used in practice. The bottom row lists the simplest FM algorithm instantiation as described in section 2.

where the conditional coupling ϑ0|1(x0|x1) = ϑ0,1(x0, x1)/q(x1) and εx1 is the delta measure centered at x1.
For the independent coupling ϑ0,1(x0, x1) = p(x0)q(x1), the first constraint above reduces to p0|1(x|x1) = p(x).
Because the delta measure does not have a density, the second constraint should be read as

∫
pt|1(x|y)f(y)dy ↓

f(x) as t ↓ 1 for continuous functions f . Note that the boundary conditions (4.5) can be verified plugging
(4.6) into (4.4).

A popular example of a conditional probability path satisfying the conditions in (4.6) was given in (2.2):

N (· | tx1, (1→ t)2I) ↓ εx1(·) as t ↓ 1.

4.3 Deriving generating velocity fields

Equipped with a marginal probability path pt, we now build a velocity field ut generating pt. The generating
velocity field ut is an average of multiple conditional velocity fields ut(x|x1), illustrated in figure 3c, and
satisfying:

ut(·|x1) generates pt|1(·|x1). (4.7)
Then, the marginal velocity field ut(x), generating the marginal path pt(x), illustrated in figure 3d, is given by
averaging the conditional velocity fields ut(x|x1) across target examples:

ut(x) =

∫
ut(x|x1)p1|t(x1|x)dx1. (4.8)

To express the equation above using known terms, recall Bayes’ rule

p1|t(x1|x) =
pt|1(x|x1)q(x1)

pt(x)
, (4.9)

17

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Static optimal transport

• 2-Wasserstein distance (static OT) between densities 𝑞" and 𝑞#
over ℝ! w.r.t. Euclidean distance cost 𝑐 𝒙, 𝒚 = ‖𝒙 − 𝒚‖

𝑊0 𝑞", 𝑞# 0 ≔ inf
2∈4

M
ℝ"×ℝ"

𝑐 𝒙, 𝒚 0 𝑑𝜋 𝒙, 𝒚

• where Π denotes the set of all joint probability measures on
ℝ!×ℝ! whose marginals are 𝑞" and 𝑞#

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Dynamic optimal transport

• Dynamic form of 2-Wasserstein distance is defined by an
optimization problem over vector fields 𝒖$

𝑊0 𝑞", 𝑞# 0 = inf
/!,𝒖!

M
ℝ"
M
"

#
𝑝$ 𝒙 ‖𝒖$ 𝒙 ‖0𝑑𝑡 𝑑𝒙

• with 𝑝$ ≥ 0 and subject to the boundary conditions 𝑝" = 𝑞",
𝑝# = 𝑞# and

𝜕𝑝$
𝜕𝑡

= −∇ ⋅ 𝑝$𝒖$
• Authors showed that when the true OT plan is available, OT-CFM
method approximates dynamic OT

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

CFM: Vector fields generating conditional probability

paths

• Let 𝒛 be a conditioning (latent) variable and

𝑝$ 𝒙 = M𝑝$ 𝒙 𝒛 𝑞 𝒛 𝑑𝒛

• where 𝑞 𝒛 is some distribution over the conditioning variable
• If 𝑝$ 𝒙 𝒛 is generated by 𝒖$ 𝒙 𝒛 from 𝑝" 𝒙 𝒛 , then

𝒖$ 𝒙 ≔ 𝐸𝒛~9 𝒛
𝒖$ 𝒙 𝒛 𝑝$ 𝒙 𝒛

𝑝$ 𝒙
• generates the probability path 𝑝$ 𝒙 under some mild conditions

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

CFM: A regression objective for mixtures

• Given: conditional probability path 𝑝$ 𝒙 𝒛 and conditional
vector fields 𝒖$ 𝒙 𝒛 are known (our design) and simple

• Goal: recover the unconditional vector field 𝒖$ 𝒙 generating the
marginal path 𝑝$ 𝒙

• Exact computation of 𝒖$ 𝒙 is intractable because 𝑝$ 𝒙 is
difficult to evaluate

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

CFM loss

• Let 𝒗): 0,1 ×ℝ! → ℝ! be a time-dependent vector filed
parametrized by 𝜃

• Conditional flow matching loss
ℒ:*+ 𝜃 ≔ 𝐸$~- ",# ,𝒛~9 𝒛 ,𝒙~/! 𝒙 𝒛 𝒗) 𝑡, 𝒙 − 𝒖$ 𝒙 𝒛 0

• CFM loss aims to regress to the marginal vector field 𝒖$ 𝒙 using
• samples from the conditional path 𝑝$ 𝒙 𝒛 and
• conditional vector fields 𝒖$ 𝒙 𝒛

• No direct access to 𝒖$ 𝒙 ; estimate it indirectly via regression

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

CFM

• Theorem If 𝑝$ 𝒙 > 0 ∀𝒙 ∈ ℝ! and 𝑡 ∈ 0,1 , then
∇)ℒ*+ 𝜃 = ∇)ℒ:*+ 𝜃

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

CFM Algorithm

• Goal: recover the unconditional vector field 𝒖$ 𝒙 generating the
marginal path 𝑝$ 𝒙
ℒ:*+ 𝜃 ≔ 𝐸$~- ",# ,𝒛~9 𝒛 ,𝒙~/! 𝒙 𝒛 𝒗) 𝑡, 𝒙 − 𝒖$ 𝒙 𝒛 0

• Requirements:
• efficiently sample from 𝑞 𝒛 and 𝑝$ 𝒙 𝒛
• efficiently compute 𝒖$ 𝒙 𝒛

• Then we can use stochastic CFM objective to regress 𝒗) 𝑡, 𝒙 ≈
𝒖$ 𝒙

Published in Transactions on Machine Learning Research (03/2024)

Algorithm 1 Conditional Flow Matching
Input: E!ciently samplable q(z), pt(x|z), and computable ut(x|z) and initial network vω.
while Training do

z → q(z); t → U(0, 1); x → pt(x|z)
LCFM(ω) ↑ ↓vω(t, x) ↔ ut(x|z)↓2

ω ↑ Update(ω, ↗ωLCFM(ω))
return vω

Table 1: Probability path definitions for existing methods which fit in the generalized conditional flow
matching framework (top) and our newly defined paths (bottom). We define two new probability path
objectives that can handle general source distributions and optimal transport flows.
Probability Path q(z) µt(z) εt Cond. OT Marginal OT General source
Var. Exploding (Song & Ermon, 2019) q(x1) x1 ε1→t ↘ ↘ ↘
Var. Preserving (Ho et al., 2020) q(x1) ϑ1→tx1

√
1 ↔ ϑ2

1→t ↘ ↘ ↘
Flow Matching (Lipman et al., 2023) q(x1) tx1 tε ↔ t + 1 ↭ ↘ ↘
Rectified Flow Liu (2022) q(x0)q(x1) tx1 + (1 ↔ t)x0 0 ↭ ↘ ↭
Var. Pres. Stochastic Interpolant Albergo & Vanden-Eijnden (2023) q(x0)q(x1) cos(1

2 ϖt)x0 + sin(1
2 ϖt)x1 0 ↭ ↘ ↭

Independent CFM q(x0)q(x1) tx1 + (1 ↔ t)x0 ε ↭ ↘ ↭
(Ours) Optimal Transport CFM ϖ(x0, x1) tx1 + (1 ↔ t)x0 ε ↭ ↭ ↭
(Ours) Schrödinger Bridge CFM ϖ2ε2(x0, x1) tx1 + (1 ↔ t)x0 ε

√
t(1 ↔ t) ↭ ↭ ↭

• §3.2.3: We consider joint distributions q(z) = q(x0, x1) that are given by minibatch optimal transport
maps, causing the learned flow to be an (approximate) OT flow.

• §3.2.4: we consider q(z) given by an entropy-regularized OT map and show that the CFM objective with
this q(z) solves the Schrödinger bridge problem.

3.2.1 FM from the Gaussian

Lipman et al. (2023) considered the problem of unconditional generative modeling given a training dataset.
Identifying the condition z with a single datapoint z := x1, and choosing a smoothing constant ε > 0, one
sets

pt(x|z) = N (x | tx1, (tε ↔ t + 1)2), (12)

ut(x|z) = x1 ↔ (1 ↔ ε)x
1 ↔ (1 ↔ ε)t , (13)

which is a probability path from the standard normal distribution (p0(x|z) = N (x; 0, I)) to a Gaussian
distribution centered at x1 with standard deviation ε (p1(x|z) = N (x; x1, ε2)). If one sets q(z) = q(x1) to
be the uniform distribution over the training dataset, the objective introduced by Lipman et al. (2023) is
equivalent to the CFM objective (10) for this conditional probability path.

We emphasize that although the conditional probability path pt(x|z) is an optimal transport path from
p0(x|z) to p1(x|z), the marginal path pt(x) is not in general an OT path from the standard normal p0(x) to
the data distribution p1(x).

3.2.2 Basic form of CFM: Independent coupling

In the basic form of CFM (I-CFM), we identify z with a pair of random variables, a source point x0 and
a target point x1, and set q(z) = q(x0)q(x1) to be the independent coupling. We let the conditionals be
Gaussian flows between x0 and x1 with standard deviation ε, defined by

pt(x|z) = N (x | tx1 + (1 ↔ t)x0, ε2), (14)
ut(x|z) = x1 ↔ x0. (15)

We note that the formulation of ut(x|z) follows from an application of Theorem 2.1 to the conditional
probability path with µt = tx1 + (1 ↔ t)x0 and εt = ε. Furthermore, we note that pt(x|z) is e!ciently

6

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

FM from the Conditional Gaussian path

• Several forms of CFM depending on the choices of 𝑞 𝒛 and
𝑝$ ⋅ 𝒛 and 𝒖$ ⋅ 𝒛 with

𝑝$ 𝒙 𝒛 = 𝑁 𝒙 𝝁$ 𝒛 , 𝜎$ 𝒛 0𝑰
• Which is generated by 𝒖$ 𝒙 𝒛

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

CFM: Algorithm overview

1. Define source and target distributions (𝑞" and 𝑞#)
2. Choose the latent distribution 𝑞 𝒛
3. Define conditional path 𝑝$ ⋅ 𝒛 with

𝑝$ 𝒙 𝒛 = 𝑁 𝒙 𝝁$ 𝒛 , 𝜎$ 𝒛 0𝑰
4. Determine conditional velocity field 𝒖$ 𝒙 𝒛 which generates

𝑝$ 𝒙 𝒛

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑞 𝒛 = 𝑞 𝒙# target distribution
𝑝$ 𝒙 𝒙# = 𝑁 𝒙 𝒙#, 𝜎$0𝑰

𝒖$ 𝒙 𝒙# = −
𝜎$′
𝜎$

𝒙 − 𝒙#

• 𝜎$0 is decreasing function of 𝑡 with sufficiently large 𝜎"
(exploding) and small 𝜎#

Variance exploding (Song & Ermon 2019)

Data space
𝒙!~𝑞! or 𝑝"#$#

Noise space
𝒙%~𝑁(𝟎, 𝜎%𝑰)

𝑝#𝑝! ≈ 𝑁(0, 𝜎!𝐼) 𝑝" ≈ 𝑞" or 𝑝$%#%

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑞 𝒛 = 𝑞 𝒙# target distribution
𝑝$ 𝒙 𝒙# = 𝑁 𝒙 𝛼$𝒙#, 1 − 𝛼$ 𝑰

𝒖$ 𝒙 𝒙# = −
𝜎$′
𝜎$

𝒙 − 𝒙#

• 𝛼$ is increasing function of 𝑡 with 𝛼" = 0 and 𝛼# = 1

Variance preserving (Ho et al. 2020)

Data space
𝒙!~𝑞! or 𝑝"#$#

Noise space
𝒙%~𝑁(𝟎, 𝑰)

𝑝#𝑝! ≈ 𝑁(0, 𝐼) 𝑝" ≈ 𝑞" or 𝑝$%#%

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

𝑞 𝒛 = 𝑞 𝒙# , 𝑞 𝒙" = 𝑁 𝒙" 𝟎, 𝑰
𝑝$ 𝒙 𝒙# = 𝑁 𝒙 𝑡𝒙#, 𝑡𝜎 − 𝑡 + 1 0𝑰

𝒖$ 𝒙 𝒙# =
1

1 − 1 − 𝜎 𝑡
𝒙# − 1 − 𝜎 𝒙

• where smoothing constant 𝜎 > 0
• 𝑝$ 𝒙 𝒙# is a conditional probability path from the standard
normal distribution 𝑝" 𝒙 𝒛 = 𝑁 𝒙 𝟎, 𝑰 to a Gaussian
distribution centered at 𝒙# with small variance 𝜎

Flow matching (Lipman et al. 2023)

Published in Transactions on Machine Learning Research (03/2024)

Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3).
Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and
OT-CFM (far right).

and Schrödinger bridge problems. For high-dimensional image generation, we also propose improved
and reproducible training practices for flow-based models that significantly improve the performance of
algorithms from past work (§5).

(4) We release a Python package, torchcfm, that unifies new and existing algorithms for training flow-based
generative models under a shared interface and provides implementations of our main experiments. The
Python code is available at https://github.com/atong01/conditional-flow-matching.

2 Background: Optimal transport and neural ODEs

Throughout the paper, we consider the setting of a pair of data distributions over Rd with (possibly unknown)
densities q(x0) and q(x1) (also denoted q0, q1). Generative modeling considers the task of fitting a mapping f
from Rd to Rd that transforms q0 to q1, that is, if x0 is distributed with density q0 then f(x0) is distributed
with density q1. This includes both the typical case when q0 is an easily sampled density, such as a Gaussian,
and the case when q0 and q1 are empirical data distributions available as finite sets of samples.

2.1 ODEs and probability flows

A smooth1 time-varying vector field u : [0, 1] → Rd ↑ Rd defines an ordinary di!erential equation:

dx = ut(x) dt, (1)

where we use the notation ut(x) interchangeably with u(t, x). Denote by ωt(x) the solution of the ODE (1)
with initial condition ω0(x) = x; that is, ωt(x) is the point x transported along the vector field u from time 0
up to time t.

Given a density p0 over Rd, the integration map ωt induces a pushforward pt := [ωt]#(p0), which is the
density of points x ↓ p0 transported along u from time 0 to time t. The time-varying density pt, viewed as a
function p : [0, 1] → Rd ↑ R, is characterized by the well-known continuity equation:

εp

εt
= ↔↗ · (ptut) (2)

and the initial conditions p0. Under these conditions, u is said to be a probability flow ODE for p, and p is
the (marginal) probability path2 generated by u.

Approximating ODEs with neural networks. Suppose the probability path pt(x) and the vector
field ut(x) generating it are known and pt(x) can be tractably sampled. If vω(·, ·) : [0, 1] → Rd ↑ Rd is a
time-dependent vector field parametrized as a neural network with weights ϑ, vω can be regressed to u via

1
To be precise, to ensure the uniqueness of integral curves (and thus of the corresponding flow), we assume the vector field u

is at least locally Lipschitz in x and Bochner integrable in t.
2
The terminology is due to t →↑ pt being a path on the infinite-dimensional manifold of probability distributions on Rd

.

3

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Let 𝒛 be a pair of random variables, a source point 𝒙"~𝑞" and a
target point 𝒙"~𝑞#

• Set 𝑞 𝒛 = 𝑞 𝒙" 𝑞 𝒙# to be the independent coupling and
𝑝$ 𝒙 𝒛 = 𝑁 𝒙 𝑡𝒙# + 1 − 𝑡 𝒙", 𝜎0𝑰

𝒖$ 𝒙 𝒛 = 𝒙# − 𝒙"
• where smoothing constant 𝜎 > 0
• Note that 𝑞 𝒛 and 𝑝$ 𝒙 𝒛 is efficiently sampleable and 𝒖$ is
efficiently computable, thus gradient descent on ℒ:*+ is also
efficient

• As 𝜎 → 0, the marginal vector field 𝒖$ approaches one that
transports the distribution 𝑞 𝒙" to 𝑞 𝒙#

Independent-CFM

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• No requirement for 𝑞 𝒙" to be Gaussian
• The conditional probability path 𝑝$ 𝒙 𝒛 is an optimal transport
path from 𝑝" 𝒙 𝒛 to 𝑝# 𝒙 𝒛

• However, the marginal path 𝑝$ is “not” in general an OT path
from 𝑝"(𝒙) to 𝑝# 𝒙

Remark of I-CFM

Published in Transactions on Machine Learning Research (03/2024)

Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3).
Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and
OT-CFM (far right).

and Schrödinger bridge problems. For high-dimensional image generation, we also propose improved
and reproducible training practices for flow-based models that significantly improve the performance of
algorithms from past work (§5).

(4) We release a Python package, torchcfm, that unifies new and existing algorithms for training flow-based
generative models under a shared interface and provides implementations of our main experiments. The
Python code is available at https://github.com/atong01/conditional-flow-matching.

2 Background: Optimal transport and neural ODEs

Throughout the paper, we consider the setting of a pair of data distributions over Rd with (possibly unknown)
densities q(x0) and q(x1) (also denoted q0, q1). Generative modeling considers the task of fitting a mapping f
from Rd to Rd that transforms q0 to q1, that is, if x0 is distributed with density q0 then f(x0) is distributed
with density q1. This includes both the typical case when q0 is an easily sampled density, such as a Gaussian,
and the case when q0 and q1 are empirical data distributions available as finite sets of samples.

2.1 ODEs and probability flows

A smooth1 time-varying vector field u : [0, 1] → Rd ↑ Rd defines an ordinary di!erential equation:

dx = ut(x) dt, (1)

where we use the notation ut(x) interchangeably with u(t, x). Denote by ωt(x) the solution of the ODE (1)
with initial condition ω0(x) = x; that is, ωt(x) is the point x transported along the vector field u from time 0
up to time t.

Given a density p0 over Rd, the integration map ωt induces a pushforward pt := [ωt]#(p0), which is the
density of points x ↓ p0 transported along u from time 0 to time t. The time-varying density pt, viewed as a
function p : [0, 1] → Rd ↑ R, is characterized by the well-known continuity equation:

εp

εt
= ↔↗ · (ptut) (2)

and the initial conditions p0. Under these conditions, u is said to be a probability flow ODE for p, and p is
the (marginal) probability path2 generated by u.

Approximating ODEs with neural networks. Suppose the probability path pt(x) and the vector
field ut(x) generating it are known and pt(x) can be tractably sampled. If vω(·, ·) : [0, 1] → Rd ↑ Rd is a
time-dependent vector field parametrized as a neural network with weights ϑ, vω can be regressed to u via

1
To be precise, to ensure the uniqueness of integral curves (and thus of the corresponding flow), we assume the vector field u

is at least locally Lipschitz in x and Bochner integrable in t.
2
The terminology is due to t →↑ pt being a path on the infinite-dimensional manifold of probability distributions on Rd

.

3

Published in Transactions on Machine Learning Research (03/2024)

Algorithm 2 Simplified Conditional Flow Matching (I-CFM)
Input: Empirical or samplable distributions q0, q1, bandwidth ω, batchsize b, initial network vω.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 → q0(x0); x1 → q1(x1)
t → U(0, 1)
µt ↑ tx1 + (1 ↓ t)x0
x → N (µt, ω2I)
LCFM(ε) ↑ ↔vω(t, x) ↓ (x1 ↓ x0)↔2

ε ↑ Update(ε, ↗ωLCFM(ε))
return vω

Algorithm 3 Minibatch OT Conditional Flow Matching (OT-CFM)
Input: Empirical or samplable distributions q0, q1, bandwidth ω, batch size b, initial network vω.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 → q0(x0); x1 → q1(x1)
ϑ ↑ OT(x1, x0)
(x0, x1) → ϑ
t → U(0, 1)
µt ↑ tx1 + (1 ↓ t)x0
x → N (µt, ω2I)
LCFM(ε) ↑ ↔vω(t, x) ↓ (x1 ↓ x0)↔2

ε ↑ Update(ε, ↗ωLCFM(ε))
return vω

Proof. Let z0 =
∫

X R0(x)dx, and z1 =
∫

X R1(x)dx then q(x0) = R0(x0)/z0, similarly q(x1) = R1(x1)/z1,
then

LECFM(ε) = Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
R0(x0)R1(x1)
q̂0(x0)q̂1(x1) ↔vω(t, x) ↓ ut(x|x0, x1)↔2

2

]
(29)

= z0z1Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
q0(x0)q0(x1)
q̂0(x0)q̂1(x1)↔vω(t, x) ↓ ut(x|x0, x1)↔2

2

]
(30)

= z0z1

∫

t,x0,x1,x

[
q0(x0)q1(x1)↔vω(t, x) ↓ ut(x|x0, x1)↔2

2

]
pt(x|x0, x1)dx0dx1dx (31)

= z0z1LCFM(ε) (32)

where we use substitution for the first step and change the order of integration in the last step. With an
application of Theorem 3.2 the gradients are equivalent up to a factor of z0z1 which does not depend on
x.

Of course LECFM leaves the question of sampling open for high-dimensional spaces. Sampling uniformly does
not scale well to high dimensions, so for practical reasons we may want a di!erent sampling strategy.

We use this objective in Fig. D.9 with a uniform proposal distribution as a toy example of this type of
training.

D Additional results

We start this section by the definition of the entropy regularized OT problem:

W (q0, q1)2
2,ε = inf

ϑω→!

∫

X 2
c(x, y)2ϑε(dx, dy) ↓ ϖH(ϑ), (33)

24

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Let 𝒛 be a pair of random variables, a source point 𝒙"~𝑞" and a
target point 𝒙"~𝑞#

• General formulation: previous formulation extends to joint
distributions

𝑞 𝒛 = 𝑞 𝒙", 𝒙#
• Allows 𝒙" and 𝒙# to be dependent and 𝑞 𝒙", 𝒙# has marginals
𝑞 𝒙" and 𝑞 𝒙#

• Set 𝑞 𝒛 = 𝑞 𝒙", 𝒙# to be the 2-Wasserstein optimal transport
map 𝜋. I.e.,

𝑞 𝒛 = 𝜋 𝒙", 𝒙#
• This method is called OT-CFM

OT-CFM

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Let 𝑞 𝒛 = 𝜋 𝒙", 𝒙#
• If

𝑝$ 𝒙 𝒛 = 𝑁 𝒙 𝑡𝒙# + 1 − 𝑡 𝒙", 𝜎0𝑰
𝒖$ 𝒙 𝒛 = 𝒙# − 𝒙" ,

• then OT-CFM is equivalent to dynamic OT in the following sense

OT-CFM: Dynamic OT

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Proposition Under regularity properties of 𝑞", 𝑞# and OT plan 𝜋,
as 𝜎0 → 0 the marginal path 𝑝$ and vector field 𝒖$ minimize the
dynamic form of the 2-Wasserstein distance

𝑊0 𝑞", 𝑞# 0 = inf
/!,𝒖!

M
ℝ"
M
"

#
𝑝$ 𝒙 ‖𝒖$ 𝒙 ‖0𝑑𝑡 𝑑𝒙

• I.e., 𝒖$ solves the dynamic OT between 𝑞" and 𝑞#

OT-CFM: Dynamic OT

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• The transport plan 𝜋 is difficult to compute and store due to
OT’s cubic time and quadratic memory complexity in the number
of samples

• Therefore, we rely on a minibatch OT approximation

• For each batch of data 𝒙"
E

EF#

G
, 𝒙#

E
EF#

G
seen during training,

we sample pairs of points from the joint distribution 𝜋HI$JK

Minibatch OT approximation

Published in Transactions on Machine Learning Research (03/2024)

Algorithm 2 Simplified Conditional Flow Matching (I-CFM)
Input: Empirical or samplable distributions q0, q1, bandwidth ω, batchsize b, initial network vω.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 → q0(x0); x1 → q1(x1)
t → U(0, 1)
µt ↑ tx1 + (1 ↓ t)x0
x → N (µt, ω2I)
LCFM(ε) ↑ ↔vω(t, x) ↓ (x1 ↓ x0)↔2

ε ↑ Update(ε, ↗ωLCFM(ε))
return vω

Algorithm 3 Minibatch OT Conditional Flow Matching (OT-CFM)
Input: Empirical or samplable distributions q0, q1, bandwidth ω, batch size b, initial network vω.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 → q0(x0); x1 → q1(x1)
ϑ ↑ OT(x1, x0)
(x0, x1) → ϑ
t → U(0, 1)
µt ↑ tx1 + (1 ↓ t)x0
x → N (µt, ω2I)
LCFM(ε) ↑ ↔vω(t, x) ↓ (x1 ↓ x0)↔2

ε ↑ Update(ε, ↗ωLCFM(ε))
return vω

Proof. Let z0 =
∫

X R0(x)dx, and z1 =
∫

X R1(x)dx then q(x0) = R0(x0)/z0, similarly q(x1) = R1(x1)/z1,
then

LECFM(ε) = Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
R0(x0)R1(x1)
q̂0(x0)q̂1(x1) ↔vω(t, x) ↓ ut(x|x0, x1)↔2

2

]
(29)

= z0z1Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
q0(x0)q0(x1)
q̂0(x0)q̂1(x1)↔vω(t, x) ↓ ut(x|x0, x1)↔2

2

]
(30)

= z0z1

∫

t,x0,x1,x

[
q0(x0)q1(x1)↔vω(t, x) ↓ ut(x|x0, x1)↔2

2

]
pt(x|x0, x1)dx0dx1dx (31)

= z0z1LCFM(ε) (32)

where we use substitution for the first step and change the order of integration in the last step. With an
application of Theorem 3.2 the gradients are equivalent up to a factor of z0z1 which does not depend on
x.

Of course LECFM leaves the question of sampling open for high-dimensional spaces. Sampling uniformly does
not scale well to high dimensions, so for practical reasons we may want a di!erent sampling strategy.

We use this objective in Fig. D.9 with a uniform proposal distribution as a toy example of this type of
training.

D Additional results

We start this section by the definition of the entropy regularized OT problem:

W (q0, q1)2
2,ε = inf

ϑω→!

∫

X 2
c(x, y)2ϑε(dx, dy) ↓ ϖH(ϑ), (33)

24

Published in Transactions on Machine Learning Research (03/2024)

Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3).
Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and
OT-CFM (far right).

and Schrödinger bridge problems. For high-dimensional image generation, we also propose improved
and reproducible training practices for flow-based models that significantly improve the performance of
algorithms from past work (§5).

(4) We release a Python package, torchcfm, that unifies new and existing algorithms for training flow-based
generative models under a shared interface and provides implementations of our main experiments. The
Python code is available at https://github.com/atong01/conditional-flow-matching.

2 Background: Optimal transport and neural ODEs

Throughout the paper, we consider the setting of a pair of data distributions over Rd with (possibly unknown)
densities q(x0) and q(x1) (also denoted q0, q1). Generative modeling considers the task of fitting a mapping f
from Rd to Rd that transforms q0 to q1, that is, if x0 is distributed with density q0 then f(x0) is distributed
with density q1. This includes both the typical case when q0 is an easily sampled density, such as a Gaussian,
and the case when q0 and q1 are empirical data distributions available as finite sets of samples.

2.1 ODEs and probability flows

A smooth1 time-varying vector field u : [0, 1] → Rd ↑ Rd defines an ordinary di!erential equation:

dx = ut(x) dt, (1)

where we use the notation ut(x) interchangeably with u(t, x). Denote by ωt(x) the solution of the ODE (1)
with initial condition ω0(x) = x; that is, ωt(x) is the point x transported along the vector field u from time 0
up to time t.

Given a density p0 over Rd, the integration map ωt induces a pushforward pt := [ωt]#(p0), which is the
density of points x ↓ p0 transported along u from time 0 to time t. The time-varying density pt, viewed as a
function p : [0, 1] → Rd ↑ R, is characterized by the well-known continuity equation:

εp

εt
= ↔↗ · (ptut) (2)

and the initial conditions p0. Under these conditions, u is said to be a probability flow ODE for p, and p is
the (marginal) probability path2 generated by u.

Approximating ODEs with neural networks. Suppose the probability path pt(x) and the vector
field ut(x) generating it are known and pt(x) can be tractably sampled. If vω(·, ·) : [0, 1] → Rd ↑ Rd is a
time-dependent vector field parametrized as a neural network with weights ϑ, vω can be regressed to u via

1
To be precise, to ensure the uniqueness of integral curves (and thus of the corresponding flow), we assume the vector field u

is at least locally Lipschitz in x and Bochner integrable in t.
2
The terminology is due to t →↑ pt being a path on the infinite-dimensional manifold of probability distributions on Rd

.

3

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Conditional flow matching method that learns vector fields to
interpolate between two distributions via an entropic optimal
transport path

• Let 𝑝LMN: 0,1 ×ℝ! → ℝ be the time dependent probability path
as the standard Wiener process scaled by 𝜎 with initial-time
marginal 𝑝LMN 𝒙" = 𝑞 𝒙"

• The SB problem (Schr*dinger 1932) seeks the process 𝜋 that is
the closest to 𝑝LMN s.t. its initial and terminal marginal
distributions are 𝑞 𝒙" and 𝑞 𝒙# resp. I.e.,

𝜋∗ = argmin
2 𝒙# F9 𝒙#
2 𝒙$ F9 𝒙$

𝐾𝐿 𝜋 ∥ 𝑝LMN

Schr*dinger bridge CFM (2021 ICML)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Define the joint distribution
𝑞 𝑧 = 𝜋0O% 𝒙", 𝒙#

• where 𝜋0O% is the solution of the entropy regularized OT with
cost 𝑐 𝒙, 𝒚 = ‖𝒙 − 𝒚‖ and entropy regularization 𝜆 = 2𝜎0

𝑊0,P 𝑞", 𝑞# 0 ≔ inf
2&∈4

M
ℝ"×ℝ"

𝑐 𝒙, 𝒚 0 𝑑𝜋P 𝒙, 𝒚 − 𝜆𝐻(𝜋P)

• where Π denotes the set of all joint probability measures on
ℝ!×ℝ! whose marginals are 𝑞" and 𝑞#

Schr*dinger bridge CFM (2021 ICML)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

• Set the conditional path distribution to be a Brownian bridge
with diffusion scale 𝜎 between 𝒙" and 𝒙# with

𝑝$ 𝒙 𝒛 = 𝑁 𝒙 𝑡𝒙# + 1 − 𝑡 𝒙", 𝑡 1 − 𝑡 𝜎0𝑰

𝒖$ 𝒙 𝒛 =
1 − 2𝑡
2𝑡 1 − 𝑡

𝒙 − 𝑡𝒙# + 1 − 𝑡 𝒙" + 𝒙# − 𝒙"
• where conditional vector field 𝒖$ 𝒙 𝒛 generates the probability
path 𝑝$ 𝒙 𝒛

• The solution of the SB is known to be the map which is the
solution of the entropically-regularized OT problem

• We recover OT-CFM when 𝜆 = 2𝜎0 → 0 and I-CFM when 𝜆 → ∞

Schr*dinger bridge CFM (2021 ICML)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Schr*dinger bridge CFM (2021 ICML)Published in Transactions on Machine Learning Research (03/2024)

Algorithm 4 Minibatch Schrödinger Bridge Conditional Flow Matching (SB-CFM)
Input: Empirical or samplable distributions q0, q1, bandwidth ω, batch size b, initial network vω.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 → q0(x0); x1 → q1(x1)
ε2ε2 ↑ Sinkhorn(x1, x0, 2ω2)
(x0, x1) → ε2ε2

t → U(0, 1)
µt ↑ tx1 + (1 ↓ t)x0
x → N (µt, ω2t(1 ↓ t)I)
ut(x|z) ↑ 1→2t

2t(1→t) (x ↓ (tx1 + (1 ↓ t)x0)) + (x1 ↓ x0) ϑ From (21)
LCFM(ϖ) ↑ ↔vω(t, x) ↓ ut(x|z)↔2

ϖ ↑ Update(ϖ, ↗ωLCFM(ϖ))
return vω

Figure D.1: Evaluation of regularization strength of ϱe over 6 seeds in the range [0, 10→5, 102]. ϱe = 0.1
performs the best in terms of minimizing path length and test error. We call this model "Regularized CNF".

where ϱ ↘ R+ and H(ε) =
∫

ln ε(x, y)dε(dx, dy).

Regularized CNF tuning Continuous normalizing flows with a path length penalty optimize a relaxed
form of a dynamic optimal transport problem (Tong et al., 2020; Finlay et al., 2020; Onken et al., 2021).
Where dynamic optimal transport solves for the optimal vector field in terms of average path length where
the marginals at time t = 0 and t = 1 are constrained to equal two input marginals q0 and q1. Instead of this
pair of hard constraints, regularized CNFs instead set q0 := N (x | 0, 1) and optimize a loss of the form

L(x(t)) = ↓ log p(x(t)) + ϱe

∫ 1

0
↔vω(t, x(t))↔2dt (34)

25

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Experiments
Published in Transactions on Machine Learning Research (03/2024)

Table 2: Comparison of neural optimal transport methods over four distribution pairs (µ ± ω over five seeds)
in terms of fit (2-Wasserstein), optimal transport performance (normalized path energy), and runtime. ‘—’
indicates a method that requires a Gaussian source. Best in bold. CFM and RF models are trained on a
single CPU core, other baselines are trained with a GPU and two CPUs.
Dataset → N→8gaussians moons→8gaussians N→moons N→scurve Avg. train time
Algorithm ↑ Metric → W 2

2 NPE W 2
2 NPE W 2

2 NPE W 2
2 NPE (↓103 s)

OT-CFM 1.262±0.348 0.018±0.014 1.923±0.391 0.053±0.035 0.239±0.048 0.087±0.061 0.264±0.093 0.027±0.026 1.129±0.335
I-CFM 1.284±0.384 0.222±0.032 1.977±0.266 2.738±0.181 0.338±0.109 0.841±0.148 0.333±0.060 0.867±0.117 0.630±0.365

2-RF (Liu, 2022) 1.436±0.344 0.069±0.027 2.211±0.423 0.149±0.101 0.278±0.026 0.076±0.067 0.395±0.111 0.112±0.085 0.862±0.166
3-RF (Liu, 2022) 1.337±0.367 0.055±0.043 2.700±0.587 0.123±0.112 0.305±0.026 0.084±0.051 0.395±0.082 0.129±0.075 0.954±0.116
FM (Lipman et al., 2023) 1.062±0.196 0.174±0.030 — — 0.246±0.077 0.778±0.144 0.377±0.099 0.772±0.081 0.708±0.370

Reg. CNF (Finlay et al., 2020) 1.144±0.075 0.274±0.060 — — 0.376±0.040 0.620±0.088 0.581±0.195 0.586±0.503 8.021±3.288
CNF (Chen et al., 2018) 1.055±0.059 0.151±0.064 — — 0.387±0.065 2.937±1.973 0.645±0.343 10.548±8.100 18.810±12.677
ICNN (Makkuva et al., 2020) 1.771±0.398 0.747±0.029 2.193±0.136 0.832±0.004 0.532±0.046 0.267±0.010 0.753±0.068 0.344±0.045 2.912±0.626

Song et al., 2021a; Bao et al., 2022). These methods generally consider a simple Gaussian di!usion process,
and do not consider generalizing the source distribution. Other works consider general source distributions
but this makes optimization and inference more challenging, needing multiple iterations or other tricks to
perform well (Wang et al., 2021; De Bortoli et al., 2021; Vargas et al., 2021).

Prior work considering simulation-free training of CNFs considers algorithms that are equivalent to CFM with
Gaussian source distribution (Rozen et al., 2021; Ben-Hamu et al., 2022; Lipman et al., 2023) or independent
samples from q0, q1 (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023; Neklyudov et al., 2023). Recent
work also studies Schrödinger bridges from unpaired samples (Shi et al., 2022) and regularization of flows
using dynamic OT (Liu et al., 2023b). We also note the work Pooladian et al. (2023), concurrent with the
preprint version of this paper. Other concurrent works explore various solutions to approximate Schrödinger
bridges (Somnath et al., 2023; Shi et al., 2023; Liu et al., 2023a).

Dynamic optimal transport. There are a variety of methods that consider dynamic OT between
continuous distributions with neural networks; however, these require constrained architectures (Leygonie
et al., 2019; Makkuva et al., 2020; Bunne et al., 2022) or use a regularized CNF, which is challenging to
optimize (Tong et al., 2020; Finlay et al., 2020; Onken et al., 2021; Huguet et al., 2022a). With our work it is
possible to achieve optimal transport flows without either of these constraints.

5 Experiments

In this section we empirically evaluate the I-CFM, OT-CFM, and SB-CFM objectives, as well as algorithms
from prior work, with respect to both optimal transport and generative modeling criteria. All experiment
details can be found in Appendix E.

5.1 Low-dimensional data: Optimal transport and faster convergence

We evaluate how well various models perform dynamic optimal transport and generative modeling in low
dimensions. We train ODEs mapping between four pairs of two-dimensional datasets: between a standard
Gaussian and 8gaussians, moons, and scurve and between moons and 8gaussians.

OT-CFM approximates dynamic OT. To measure how well a model solves the OT problem we
use normalized path energy (NPE), defined via the 2-Wasserstein distance as NPE(vω) = |PE(vω) ↔
W 2

2 (q0, q1)|/W 2
2 (q0, q1), where the path energy (PE) is PE(vω) = Ex(0)→q(x0)

∫ 1
0 ↗vω(t, x(t))↗2dt. Table 2

summarizes our results showing that OT-CFM flows generalize better to the test set and are very close to
the dynamic OT paths as measured by normalized path energy. We find transforming moons↘8gaussians to
be particularly challenging to learn for I-CFM as compared to OT-CFM; the learned paths are depicted in
Fig. 1 (bottom). Although OT-CFM uses a minibatch OT map, we find that OT-CFM requires surprisingly
small batches to approximate the OT map well, suggesting some generalization advantages of the network
optimization (Fig. D.2).

9

• Normalized path energy

M
ℝ"
M
"

#
𝑝$ 𝒙 ‖𝒖$ 𝒙 ‖0𝑑𝑡 𝑑𝒙 ≈

1
𝑇
j
EF#

Q
1
𝑁
j
RF#

S

‖𝒗𝜽 𝑡E, 𝒙$'
R ‖0

Where 𝑡# = 0, 𝑡Q = 1, 𝒙"
R ~𝑞" and 𝒙$'($

R = 𝒙$'
R + 𝒗𝜽 𝑡E, 𝒙$'

R

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Experiments

Published in Transactions on Machine Learning Research (03/2024)

Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3).
Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and
OT-CFM (far right).

and Schrödinger bridge problems. For high-dimensional image generation, we also propose improved
and reproducible training practices for flow-based models that significantly improve the performance of
algorithms from past work (§5).

(4) We release a Python package, torchcfm, that unifies new and existing algorithms for training flow-based
generative models under a shared interface and provides implementations of our main experiments. The
Python code is available at https://github.com/atong01/conditional-flow-matching.

2 Background: Optimal transport and neural ODEs

Throughout the paper, we consider the setting of a pair of data distributions over Rd with (possibly unknown)
densities q(x0) and q(x1) (also denoted q0, q1). Generative modeling considers the task of fitting a mapping f
from Rd to Rd that transforms q0 to q1, that is, if x0 is distributed with density q0 then f(x0) is distributed
with density q1. This includes both the typical case when q0 is an easily sampled density, such as a Gaussian,
and the case when q0 and q1 are empirical data distributions available as finite sets of samples.

2.1 ODEs and probability flows

A smooth1 time-varying vector field u : [0, 1] → Rd ↑ Rd defines an ordinary di!erential equation:

dx = ut(x) dt, (1)

where we use the notation ut(x) interchangeably with u(t, x). Denote by ωt(x) the solution of the ODE (1)
with initial condition ω0(x) = x; that is, ωt(x) is the point x transported along the vector field u from time 0
up to time t.

Given a density p0 over Rd, the integration map ωt induces a pushforward pt := [ωt]#(p0), which is the
density of points x ↓ p0 transported along u from time 0 to time t. The time-varying density pt, viewed as a
function p : [0, 1] → Rd ↑ R, is characterized by the well-known continuity equation:

εp

εt
= ↔↗ · (ptut) (2)

and the initial conditions p0. Under these conditions, u is said to be a probability flow ODE for p, and p is
the (marginal) probability path2 generated by u.

Approximating ODEs with neural networks. Suppose the probability path pt(x) and the vector
field ut(x) generating it are known and pt(x) can be tractably sampled. If vω(·, ·) : [0, 1] → Rd ↑ Rd is a
time-dependent vector field parametrized as a neural network with weights ϑ, vω can be regressed to u via

1
To be precise, to ensure the uniqueness of integral curves (and thus of the corresponding flow), we assume the vector field u

is at least locally Lipschitz in x and Bochner integrable in t.
2
The terminology is due to t →↑ pt being a path on the infinite-dimensional manifold of probability distributions on Rd

.

3

Thanks

